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Thanks to the organizers for this lucky invitation, in particular:
Ed Saff, Rob Womersley and Peter Grabner. Thanks to my
collaborators and students who did 99 percent of the work.
Alec and QingZhong are my collaborators on the Quantum

gate part of this talk.
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Thompson

The ” Thompson” problem aims to understand a well defined
periodic table by packing repulsively interacting
particles-electrons on a set with some topology. When
formulated for Euclidean space (some metric), the problem is
that of finding a collection (or packing) of non-overlapping
equal balls with the largest density in space for example a
d-dimensional sphere Sd or a d-dimensional ball/torus.
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The problem can be formulated generally and has deep
applications in many areas for example Crystal structure,
Special Functions, Orthogonal Polynomials, Random Matrix
Theory, Integer Lattices, Cryptography and distribution of
primes, Discrepancy, Computer Vision, Learning theory,
Network design (for example on classes of Riemanian
manifolds), Designs-codes, approximation theory and many
others.
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Interacting particle-1

In Euclidean space: Choose a repulsive potential and then
minimize the energy of N ≥ 2 particles-electrons that are
constrained to Sd for some d ≥ 1 and interact pairwise with
this potential with Euclidean metric. What can be said about
the minimizing configurations? In particular, we may ask
about regularity and dislocation properties of these later
configurations. A related problem is the Wigner crystal where
one considers positively charged particles in a uniform
background of negative charge so that the whole system is
neutral. One expects that the energy minimizing configuration
forms a crystal.
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In electrostatics, a positive charge µ placed upon a conductor
will distribute itself so as to minimize its energy. Equilibrium
will be reached when the total energy is minimal amongst all
possible charge distributions.
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Discrepancy-Energy

I S. B. Damelin, F. Hickernell, D. Ragozin and X. Zeng, On
energy, discrepancy and G invariant measures on
measurable subsets of Euclidean space, Journal of
Fourier Analysis and its Applications (2010) (16), pp
813-839.

I S. B. Damelin, J. Levesley, D. L. Ragozin and X. Sun,
Energies, Group Invariant Kernels and Numerical
Integration on Compact Manifolds, Journal of Complexity,
25(2009), pp 152-162.
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Discrepancy-Potential

Henceforth, X is a measurable subset of Euclidean space
and let M(X) denote the space of all (non zero) signed Borel
measures (distributions) µ on X with finite charge (mass)
Q(µ) :=

∫
X dµ . If the space M(X) is endowed with a norm

‖ · ‖M(X ) , then the discrepancy problem measures the
difference between any two measures in M(X ) in the norm
|| · ||M(X ) .

Steven Damelin Joint work with: Alec Greene, QingZhong LiangApproximating 1-Qubit Gates: Energy and Discrepancy



Some common themes
Interacting particle-Energy-Discrepancy

The Quantum Problem
Conjecture on the Covering Radius

Let K : X2 → R be a positive definite function. This means
that

∫
X2 K(x, y)dµ(x)dµ(y) exists, is finite and is positive for

µ ∈M(X) . Also, we assume that K is symmetric, ie,
K(x, y) = K(y, x) for all x, y ∈ X . We call K an energy
kernel, which means that the potential field φK,µ induced by
the charge distribution µ on X exists and is given by

φK,µ(X) =

∫
X
K(x, y) dµ(y), x ∈ X.
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Energy-2

The energy of a charge distribution µ ∈M(X) is

EK(µ) =

∫
X2

K(x, y) dµ(x) dµ(y).

Sometimes we need to assume that K is conditionally
positive definite, meaning∫

X2

K(x, y) dµ(x) dµ(y) > 0 ∀µ 6= 0 with Q(µ) = 0.

For conditionally positive definite kernels the energy EK(µ)
may be negative.
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Example in Learning

I Sung Jin Hwang, Steven B. Damelin, Alfred O. Hero III,
Shortest Path through Random Points, The Annals of
Applied Probability, 2016, Vol. 26, No. 5, pp 2791-2823.

I Raviv Raich, Jose A. Costa, Steven B. Damelin, Alfred O.
Hero, Classification Constrained Dimensionality
Reduction, arxiv: 0802.2906.
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Nowdays, we are constantly flooded with information of all
sorts and forms and a common denominator of data analysis
in many emerging fields of current interest are large amounts
of measurable observations X that may sit or lie near or on a
manifold embedded in some high dimensional Euclidean
space. Think of X as a discrete metric space. We call this
the ”Manifold hypothesis problem”.
For example the data could be the frames of your favorite
movie produced by a digital camera or the pixels of a
hyperspectral image in a computer vision problem or
unlabelled face recognition labels.
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Kernel correlation
The crux of the matter is the following essential observation.
Given a discrete set X of data, there is often a (local or
global) correlation between the members of X which is
defined by way of an energy kernel. Examples of energy
kernels which arise in this way:
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The weighted Riesz/Newtonian kernel on d dimensional
compact subsets of Rd′ , d′ ≥ d ≥ 1

Ks,w(x, y) =


w(x, y)|x− y|−s, 0 < s < d, x, y ∈ Rd′ ,
−w(x, y) log |x− y|, s = 0, x, y ∈ Rd′

w(x, y)(c− |x− y|−s), −1 ≤ s < 0, x, y ∈ Rd′

where w : (Rd
′
)2 → (0,∞) is chosen such that K is an

energy kernel.
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Active Newtonian
The case when w is active, comes about for example in
problems in computer modeling in which points are not
necessarily uniformly distributed. The case when −1 ≤ s < 0
appears more frequently in discrepancy theory. Here c is
chosen so that the kernel is positive definite.

For a suitable action ρ , if ρ(distK(x, y)) is conditionally
negative semi-definite and ρ(0) = 0 , then Ψ(ρ(distK(x, y))) is
an energy kernel for any non constant, completely monotonic
function Ψ on Rd′ where distK is a suitable metric on (Rd

′
)2 .
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Examples-Brachial Plexus-Hamming-Codes-A
sample of some papers: See my homepage.

I For example, typical examples of such kernels are the
heat kernel exp(−c|x− y|2), c > 0 on X and certain
Hamming distance kernels used in the construction of
linear codes when well defined.

Steven Damelin Joint work with: Alec Greene, QingZhong LiangApproximating 1-Qubit Gates: Energy and Discrepancy



Some common themes
Interacting particle-Energy-Discrepancy

The Quantum Problem
Conjecture on the Covering Radius

I J. H. Ann, S. B. Damelin and P. Bigeleisen, Medical
Image segmentation using modified Mumford
segmentation methods, Ultrasound-Guided Regional
Anesthesia and Pain Medicine, eds P. Bigeleisen,
Chapter 40, Birkhauser.

I Kerry Cawse, Steven B. Damelin, Amandine Robin,
Michael Sears, A parameter free approach for
determining the intrinsic dimension of a hyperspectral
image using Random Matrix Theory, IEEE Transaction on
Image Processing, 22(4), 1301-1310,

I S. B. Damelin, On Bounds for Diffusion, Discrepancy and
Fill Distance Metrics, Springer Lecture Notes in
Computational Science and Engineering, Vol. 58, pp
32-42.
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Brachial Plexus
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Point energies

I Let us consider the problem of regularity for
arrangements of N ≥ 2 points on a class of
d-dimensional compact sets A embedded in Rd′ ( ie
sphere Sd , ball and torus). We assume that these
N ≥ 2-arrangements interact through the Riesz kernel:

Ks(x, y) =


|x− y|−s, 0 < s < d, x, y ∈ Rd′ ,
− log |x− y|, s = 0, x, y ∈ Rd′

(c− |x− y|−s), −1 ≤ s < 0, x, y ∈ Rd′
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Point Energies-2

I Given a compact set A ⊂ Rd′ and a collection
ωN = {x1, . . . , xN} of N ≥ 2 distinct points on A , the
discrete Riesz s-energy associated with ωN is given by

Es(A, ωN ) :=
∑

1≤i<j≤N
|xi − xj |−s.

Let ω ∗s(A,N) := {x∗1, . . . , x∗N} ⊂ A be a configuration for
which Es(A, ωN ) attains its minimal value, that is,

Es(A,N) := min
ωN⊂A

Es(A, ωN ) = Es(A, ω
∗
s(A,N)).
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I In accordance with convention, we shall call such
minimal configurations s-extremal configurations. It is
well-known that, in general, s-extremal configurations are
not always unique. For example, in the case of the unit
sphere Sd , they are invariant under rotations.
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[−1, 1][L,MF-M-R-S]

I The interval [−1, 1] , meas([−1, 1]) = 1 :

I In the limiting cases, i.e., s = 0 (logarithmic interactions)
and s =∞ (best-packing problem), the s-extremal
configurations are Fekete points and equally spaced
points, respectively.

I Fekete points are distributed on [−1, 1] according to the
arcsine measure, which has the density
µ′0(x) := (1/π)(1− x2)−1/2 .

I Equally spaced points, −1 + 2(k − 1)/(N − 1) ,
k = 1, . . . , N , have the arclength distribution, as N →∞ .
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Critical transition: Movement of Mass

I s = 1 is the critical value in the sense that s-extremal
configurations are distributed on [−1, 1] differently for
s < 1 and s ≥ 1 .

I For s < 1 , the limiting distribution of s-extremal
configurations has an arcsine-type density

µ′s(x) :=
Γ(1 + s/2)√
π Γ((1 + s)/2)

(1− x2)(s−1)/2.

I For s ≥ 1 , the limiting distribution is the arclength
distribution.
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I This dependence of the distribution of s-extremal
configurations over [−1, 1] and the asymptotics for
minimal discrete s-energy on s can be easily explained
from potential theory point of view.

I For a probability Borel measure ν on [−1, 1] , its
s-energy integral is defined to be

Is([−1, 1], ν) :=

∫∫
[−1,1]2

|x− y|−sdν(x)dν(y)

(which can be finite or infinite).
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I Let, for a set of points ωN = {x1, . . . , xN} on [−1, 1] ,

νωN :=
1

N

N∑
i=1

δxi

denote the normalized counting measure of ωN (so that
νωN ([−1, 1]) = 1). Then the discrete Riesz s-energy,
associated with ωN can be written as

Es([−1, 1], ωN ) = (1/2)N2

∫∫
x 6=y

|x− y|−sdνωN (x)dνωN (y)

where the integral represents a discrete analog of the
s-energy integral for the point-mass measure νωN .
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I If s < 1 , then the energy integral is minimized uniquely
by an arcsine-type measure ν∗s , whose density µ′s(x)
with respect to the Lebesgue measure.

I On the other hand, the normalized counting measure
ν∗s,N of an s-extreme configuration minimizes the discrete
energy integral over all configurations ωN on [−1, 1] .

I Thus one can reasonably expect that, for N large Thus
one can reasonably expect that, for N large, ν∗s,N is
“close” to ν∗s .
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I If s ≥ 1 , then the energy integral diverges for every
measure ν .

I Concerning the distribution of s-extremal points over
[−1, 1] , the interactions are now strong enough to force
them to stay away from each other as far as possible.

I Of course, depending on s , “far” neighbors still
incorporate some energy in Es([−1, 1], N) , but the
closest neighbors are dominating. So, s-extremal points
distribute themselves over [−1, 1] in an equally spaced
manner.
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The Sphere [HS]

I The unit sphere Sd , dH(Sd) = d : Here we again see three
distinct cases: s < d , s = d , and s > d . Although it turns
out that, for any s , the limiting distribution of s-extremal
configurations is given by the normalized area measure
on Sd .
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I Consider the sphere S2 embedded in R3 . The minimum
Riesz s-energy points presented are close to global
minimum. In the table below, ρ denotes fill
distance(mesh norm); 2δ denotes separation angle
which is twice the separation (packing) radius and a
denotes mesh ratio which is ρ/δ . Plots 1-4 illustrate
s = 1, 2, 3, 4 extremal configurations for 400 points
respectively. Because area measure is equilibrium
measure in all cases due to symmetry, the points are
similar for all values of s considered.
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s, ρ, 2δ, a
1, 0.113607, 0.175721, 1.2930
2, 0.127095, 0.173361, 1.4662
3, 0.128631, 0.173474, 1.4830
4, 0.134631, 0.172859, 1.5577
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Figure: S2 , s = 1
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Figure: S2 , s = 2

Steven Damelin Joint work with: Alec Greene, QingZhong LiangApproximating 1-Qubit Gates: Energy and Discrepancy



Some common themes
Interacting particle-Energy-Discrepancy

The Quantum Problem
Conjecture on the Covering Radius

Figure: S2 , s = 3
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Energy Equilibrium and Discrepancy
Equivalence

We recall that the energy of a charge distribution µ ∈M(X)
is

EK(µ) =

∫
X2

K(x, y) dµ(x) dµ(y),

and the energy of the charge distribution µ in the field
fK,µ(x) =

∫
X K(x, y)dµf (y) induced by the charge

distribution µf is

EK(µ, µf ) =

∫
X
f(x) dµ(x) =

∫
X2

K(x, y) dµ(x) dµf (y) = 〈µ, µf 〉M .
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Here we see that EK(µ, µf ) defines an inner product on the
space of signed measures (charge distributions) for which the
energy is finite.
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We also call K the reproducing kernel of a Hilbert space,
H(K) which is a Hilbert space of functions f : X → R . This
means that K(·, y) is the representer of the linear functional
that evaluates f ∈ H(K) at y :

f(y) = 〈K(·, y), f〉H(K) ∀f ∈ H(K), y ∈ X.

For any f, g ∈ H(K) with f(x) =
∫
X K(x, y) dµf (y) and

g(x) =
∫
X K(x, y)dµg(y) it follows that their inner product is

the energy of the two corresponding charge distributions:

〈f, g〉H(K) = EK(µf , µg) =

∫
X2

K(x, y) dµf (x) dµg(y) = 〈µf , µg〉M

Note that a crucial feature of the function space H(K) is that
it depends directly on the kernel K . More precisely, we have:
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I S. B. Damelin, F. Hickernell, D. Ragozin and X. Zeng, On
energy, discrepancy and G invariant measures on
measurable subsets of Euclidean space, Journal of
Fourier Analysis and its Applications (2010) (16), pp
813-839.

I S. B. Damelin, J. Levesley, D. L. Ragozin and X. Sun,
Energies, Group Invariant Kernels and Numerical
Integration on Compact Manifolds, Journal of Complexity,
25(2009), pp 152-162.
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Let K be a conditionally positive definite energy kernel. Then

EK(µ) =

∫
X2

K(x, y)dµ(x)dµ(y) ≥ [Q(µ)]2

CK(X)
, µ ∈M(X)

for the capacity constant CK(X) depending only on X and
K with equality holding for any equilibrium charge distribution
µe,K , defined as one that induces a constant field,

φK,µe,K (x) =

∫
X
K(x, y) dµe,K(y) =

Q(µe,K)

CK(X)
∀x ∈ X.
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Torus
I Consider a torus embedded in R3 with inner radius 1 and

outer radius 3. In this case, no longer have symmetry
and so the three cases presented below for the minimum
Riesz s-energy points s = 1, 2, 3 are not similar. Again
we have 400 points.
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Figure: Torus, s = 1
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Figure: Torus, s = 2
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Figure: Torus, s = 3
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I S. B. Damelin, V. Maymeskul, On Point Energies,
Separation Radius and Mesh Norm for s-Extremal
Configurations on Compact Sets in Rn , Journal of
Complexity, Volume 21(6)(2006), pp 845-863.

I We define the point energies associated with ω ∗s(A,N)
by

Ej,s(A,N) :=
N∑
i=1
i 6=j

∣∣x∗j − x∗i ∣∣−s , j = 1, . . . , N.

Let A ∈ Ad and s > d . Then, for all 1 ≤ j ≤ N ,

Ej,s(A,N) ≤ CN s/d.
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Regularity: Separation s > d

I For j = 1, . . . , N and a set ωN = {x1, . . . , xN} of distinct
points on A ∈ Ad , we let

δj (ωN ) := min
i 6=j
{|xi − xj |}

and define
δ (ωN ) := min

1≤j≤N
δj (ωN ) .

The quantity δ (ωN ) is called the separation or packing
radius and gives the minimal distance between points in
ωN .
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fill-distance and covering radius

We also define the fill distance(mesh norm) ρ (A, ωN ) of ωN

by
ρ (A, ωN ) := max

y∈A
min
x∈ωN

|y − x|.

Geometrically, ρ (A, ωN ) means the maximal radius of a cap
on A , which does not contain points from ωN .
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These two quantities, δ (ωN ) and ρ (A, ωN ) , give a good
enough description of the distribution of ωN over the set A .
It is worth mentioning that, even for a sequence {ωN} of
asymptotically s-extremal configurations, i.e., configurations
satisfying

lim
N→∞

Es(A, ωN )

Es(A,N)
= 1,

one can get only trivial estimates for the separation radius.
Namely,

δ (ωN ) ≥ cN−(1/d+1/s), s > d.

However, for s-extremal configurations on A much better
(best possible) estimate for the separation radius holds.
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I S. B. Damelin, V. Maymeskul, On Point Energies,
Separation Radius and Mesh Norm for s-Extremal
Configurations on Compact Sets in Rn , Journal of
Complexity, Volume 21(6)(2006), pp 845-863.

I For A , s > d , and any s-extremal configuration
ω ∗s(A,N) on A ,

δ∗s(A,N) := δ (ω ∗s(A,N)) ≥ cN−1/d.
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Regularity: Separation, s < d− 1

I S. B. Damelin, V. Maymeskul, On Point Energies,
Separation Radius and Mesh Norm for s-Extremal
Configurations on Compact Sets in Rn , Journal of
Complexity, Volume 21(6)(2006), pp 845-863.

I Separation results for s < d are far more difficult to find in
the literature for the sets A . A reason for such a lack of
results for weak interactions (s < d) is that this case
require more delicate considerations based on the
minimizing property of ω ∗s(A,N) while strong
interactions (s > d) prevent points to be very close to
each other without affecting the total energy.
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A separation estimate in the case s < d− 1 for
the unit sphere Sd .

I S. B. Damelin, V. Maymeskul, On Point Energies,
Separation Radius and Mesh Norm for s-Extremal
Configurations on Compact Sets in Rn , Journal of
Complexity, Volume 21(6)(2006), pp 845-863.

I For d ≥ 2 and s < d− 1 ,

δ∗s(S
d, N) ≥ cN−1/(s+1).
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For any 0 < s < d− 1 ,

lim
N→∞

max1≤j≤N Ej,s(Sd, N)

min1≤j≤N Ej,s(Sd, N)
= 1.
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Numerical computations for a sphere and a torus suggest
that, for any s > 0 , the point energies are nearly equal for
almost all points (which are of so called “hexagonal” type).
However, some points (“pentagonal”) have elevated energies
and some (“heptagonal”) have low energies. The transition
from points that are “hexagonal” to those that are
“pentagonal” and “heptagonal” induces dislocation (scar)
defects, which are conjectured to vanish for N large enough.
Thus, the corollary confirms this conjecture for 0 < s < d− 1 .
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The estimate above can be improved for d ≥ 3
and s ≤ d− 2.

I S. B. Damelin, V. Maymeskul, On Point Energies,
Separation Radius and Mesh Norm for s-Extremal
Configurations on Compact Sets in Rn , Journal of
Complexity, Volume 21(6)(2006), pp 845-863.

I Let d ≥ 3 and s ≤ d− 2 . Then

δ∗s(S
d, N) ≥ cN−1/(s+2).
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Finite Field Algorithm
I S. B. Damelin, G. Mullen and G. Michalski, The

cardinality of sets of k independent vectors over finite
fields, Monatsh.Math, 150(2008), pp 289-295.

I S.B. Damelin, G. Mullen, G. Michalski and D. Stone, On
the number of linearly independent binary vectors of fixed
length with applications to the existence of completely
orthogonal structures, Monatsh Math, (1)(2003), pp 1-12.

I B.Bajnok, S.B. Damelin, J. Li and G. Mullen, A
constructive method of scattering points on d
dimensional spheres using finite fields, Computing
(Springer), 68 (2002), pp 97-109, arxiv:1512.02984.
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For an odd prime p , let Fp denote the finite field of integers
modulo p . Consider the quadratic form given above over Fp .
Let N = N(d, p) denote the number of solutions of this form.

Step 1 ,We have:

N(d, p) =

{
pd − p(d−1)/2η((−1)(d+1)/2) if d is odd

pd + pd/2η((−1)d/2) if d is even

Here η is the quadratic character defined on Fp by η(0) = 0,
η(a) = 1 if a is a square in Fp , and η(a) = −1 if a is a
non-square in Fp .
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Step 2

We now scale and centre around the origin.

Given a solution vector

X = (x1, . . . , xd+1), xi ∈ Fp, 1 ≤ i ≤ d+ 1,

we may assume without loss of generality that the points xi
are scaled so that they are centered around the origin and are
contained in the set

{−(p− 1)/2, ..., (p− 1)/2}.
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More precisely, if xi ∈ X , define

wi =

{
xi if xi ∈ {0, ..., (p− 1)/2}

xi − p if xi ∈ {(p+ 1)/2, ..., p− 1}.

Then wi ∈ {−(p− 1)/2, ..., (p− 1)/2} and the scaled vector

W = (w1, . . . , wd+1), 1 ≤ i ≤ d+ 1

solves the above if and only if X solves the above.

Step 3 Denoting by || · || the usual Euclidean metric, we
multiply each solution vector W by 1

||W || . Clearly each of
these normalized points is now on the surface of the unit
sphere Sd .
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Use of the finite field Fp for larger primes p provides a
method to increase the number N of points that are placed on
the surface of Sd for any fixed d ≥ 1 . For increasing values of
p , we obtain an increasing number N = O(pd) of points
scattered on the surface of the unit sphere Sd ; in particular,
as p→∞ through all odd primes, it is clear that N →∞ .

For each prime p and integer d ≥ 1 , we will henceforth
denote the set of points arising from our finite field
construction by X = X(d, p) .
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Examples

Let us now describe the point set X produced by the finite
field construction and provide some explicit examples for
small values of p and q . In each case, we may start with a
well chosen set V = V (d, p) of vectors.

In order to construct the full set of points X(d, p) , we need to
consider all points obtained from V by taking ±1 times the
entry in each coordinate, and by permuting the coordinates of
each vector, in all possible ways. For small values of d and p ,
this construction is summarized in the following table.
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d p N(d, p) V (d, p)

1 3 4 {(1, 0)}
1 5 4 {(1, 0)}
1 7 8 {(1, 0), 1√

2
(1, 1)}

2 3 6 {(1, 0, 0)}
2 5 30 {(1, 0, 0), 1√

2
(2, 1, 1)}

2 7 42 {(1, 0, 0), 1√
2
(1, 1, 0), 1√

22
(3, 3, 2)}

Observe that for p = 3, 5, 7 and d = 1 , our construction gives
the optimal solution, namely the vertices of the regular
N -gon. This, however, is not the case for p > 7 .
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Spherical t-designs

Definition A finite set X of points on the d-sphere Sd is a
spherical t-design or a spherical design of strength t , if for
every polynomial f of total degree t or less, the average
value of f over the whole sphere is equal to the arithmetic
average of its values on X . If this only holds for
homogeneous polynomials of degree t , then X is called a
spherical design of index t .
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For every odd positive integer k , odd prime p , and dimension
d ≥ 1 , X(d, p) is a spherical design of index k . Furthermore,
X(d, p) is a spherical 3-design.
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Extension to finite fields of odd prime powers

Solve the same quadratic form over a general finite field Fq ,
where q = pe is an odd prime power and in this way distribute
points on Sd as well. One way to do this is as follows.
Assume that q = pe , with e ≥ 1 . Then the field Fq is an
e-dimensional vector space over the field Fp . Let α1, . . . , αe
be a basis of Fq over Fp . Thus if α ∈ Fq , then α can be
uniquely written as α = a1α1 + · · ·+ aeαe , where each
ai ∈ Fp . Moreover, we may assume that each ai satisfies
−(p− 1)/2 ≤ ai ≤ (p− 1)/2 .
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If (x1, . . . , xd+1) is a solution to the quadratic form (1.1) over
Fq , then each xi is of the form xi = α ∈ Fq . Corresponding to
the finite field element xi = α , we may now naturally
associate the integer Mi = a1 + a2p+ · · ·+ aep

e−1 . It is an
easy exercise to check that indeed
−(pe − 1)/2 ≤Mi ≤ (pe − 1)/2 . We then map the vector
V = (M1, . . . ,Md+1) to the surface of the unit sphere Sd by
normalizing the vector V . We note that when e = 1 , this
reduces to our original construction. In particular, for
increasing values of e , we obtain an increasing number Ne of
points scattered on the surface of the unit sphere Sd , so that
as e→∞ , it is clear that Ne →∞ .
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Who Wins: Covering radius

I ρ : Points XN randomly and independently distribution by
area measure on Sd : Eρ(XN ) has limit ((logN)/N)1/d) .

I Not extremal on A needed:

δ (ωN ) ≥ cN−(1/d+1/s), s > d.

I Extremal on A : For A , s > d , and any s-extremal
configuration ω ∗s(A,N) on A ,

δ∗s(A,N) := δ (ω ∗s(A,N)) ≥ cN−1/d.

I For d ≥ 2 and s < d− 1 ,

δ∗s(S
d, N) ≥ cN−1/(s+1).

I Let d ≥ 3 and s ≤ d− 2 . Then

δ∗s(S
d, N) ≥ cN−1/(s+2).
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The Quantum Problem
Conjecture on the Covering Radius

Who Wins: Covering radius-2

I Integer lattices (as I will use in the Quantum Section):
Sarnak Conjecture N−1/4 .

I FF Field and spherical design.
I The finiteness and complexity.
I I will assume for my integer lattices a lower bound of

(logN)bN−1/4 any b which will suffice for my
approximation.

I Hyperuniform points, Salvatore was talking about and
Peter Grabner?

.

Steven Damelin Joint work with: Alec Greene, QingZhong LiangApproximating 1-Qubit Gates: Energy and Discrepancy



Some common themes
Interacting particle-Energy-Discrepancy

The Quantum Problem
Conjecture on the Covering Radius

Who Wins: Covering radius-2

I Integer lattices (as I will use in the Quantum Section):
Sarnak Conjecture N−1/4 .

I FF Field and spherical design.

I The finiteness and complexity.
I I will assume for my integer lattices a lower bound of

(logN)bN−1/4 any b which will suffice for my
approximation.

I Hyperuniform points, Salvatore was talking about and
Peter Grabner?

.

Steven Damelin Joint work with: Alec Greene, QingZhong LiangApproximating 1-Qubit Gates: Energy and Discrepancy



Some common themes
Interacting particle-Energy-Discrepancy

The Quantum Problem
Conjecture on the Covering Radius

Who Wins: Covering radius-2

I Integer lattices (as I will use in the Quantum Section):
Sarnak Conjecture N−1/4 .

I FF Field and spherical design.
I The finiteness and complexity.

I I will assume for my integer lattices a lower bound of
(logN)bN−1/4 any b which will suffice for my
approximation.

I Hyperuniform points, Salvatore was talking about and
Peter Grabner?

.

Steven Damelin Joint work with: Alec Greene, QingZhong LiangApproximating 1-Qubit Gates: Energy and Discrepancy



Some common themes
Interacting particle-Energy-Discrepancy

The Quantum Problem
Conjecture on the Covering Radius

Who Wins: Covering radius-2

I Integer lattices (as I will use in the Quantum Section):
Sarnak Conjecture N−1/4 .

I FF Field and spherical design.
I The finiteness and complexity.
I I will assume for my integer lattices a lower bound of

(logN)bN−1/4 any b which will suffice for my
approximation.

I Hyperuniform points, Salvatore was talking about and
Peter Grabner?

.

Steven Damelin Joint work with: Alec Greene, QingZhong LiangApproximating 1-Qubit Gates: Energy and Discrepancy



Some common themes
Interacting particle-Energy-Discrepancy

The Quantum Problem
Conjecture on the Covering Radius

Who Wins: Covering radius-2

I Integer lattices (as I will use in the Quantum Section):
Sarnak Conjecture N−1/4 .

I FF Field and spherical design.
I The finiteness and complexity.
I I will assume for my integer lattices a lower bound of

(logN)bN−1/4 any b which will suffice for my
approximation.

I Hyperuniform points, Salvatore was talking about and
Peter Grabner?

.

Steven Damelin Joint work with: Alec Greene, QingZhong LiangApproximating 1-Qubit Gates: Energy and Discrepancy



Some common themes
Interacting particle-Energy-Discrepancy

The Quantum Problem
Conjecture on the Covering Radius

Invariant kernels on compact, reflexive
homogenous spaces

Let X ⊂ Rd+k be a d ≥ 1, k ≥ 0 dimensional embedded
reflexive, compact homogeneous C∞ manifold; i.e. there is a
compact group G of isometries of Rd+k such that for some
η ∈ X (often referred to as the pole) X = {gη : g ∈ G} . The
reflexive condition means that for each pair x, y ∈ X there is
a g ∈ G with gx = y and gy = x . A natural example to keep
in mind is Sd , the d dimensional sphere realized as a subset
of Rd+1 which is the orbit of any unit vector under the action
of SO(d+ 1) , the group of d+ 1 dimensional orthogonal
matrices of determinant 1.
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A kernel K : X ×X → R is termed zonal (or G-invariant) if
K(x, y) = K(gx, gy) for all g ∈ G and x, y ∈ X . Since the
maps in G are isometries of Euclidean space, they preserve
both Euclidean distance and the (arc-length) metric d(·, ·)
induced on the components of X by the Euclidean metric.
Thus the distance kernel d(x, y) on Sd is zonal. The manifold
X carries a normalized surface (G-invariant) measure which
we call µe .
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In what follows, we will assume henceforth that a zonal kernel
is continuous off the diagonal, lower semi-continuous
everywhere and satisfies the following two conditions below:
I ∫

X
K(x, y)dµ(y)

exists for every x ∈ X .
I For each non-trivial continuous function φ on X , we have∫

X

∫
X
K(x, y)φ(x)φ(y)dµ(x)dµ(y) > 0.
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The archetype for such kernels is the weighted Riesz kernel

κ(x, y) = w(x, y)‖x− y‖−s, s > 0, x, y ∈ X.

where w : X ×X → (0,∞) is G invariant, positive definite,
continuous off the diagonal and lower semi continuous
everywhere.
Such kernels (in the case w ≡ 1) arise naturally in describing
the distributions of electrons on rectifiable manifolds such as
the sphere Sd . The case when w is active, comes about for
example in problems in computer modelling where points are
do not have a uniform density. Note that when s > −d , K is
absolutely integrable on X .
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The error in integration is defined by

R(f, Z) :=

∫
X
f(y)dµ(y)− 1

N

∑
z∈Z

f(z).

For example, our result below applies to the space Pin of
polynomials of degree at most n ≥ 1 on X . Here, the space
Πn on X is realized as the space{
p ∈ C(X) : p = pn|X, for some polynomial, pn ∈ C(Rd+k)

}
of degree at most n .
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Harmonic analysis on X , in our case, requires the
construction of harmonic polynomials on X . In this regard, if
Πj is the space of all polynomials of total degree j ≥ 1 in the
ambient space Rd+k then Pj := Πj |X is the space of degree
j polynomials on X . We can also construct sets of harmonic
polynomials Hj := Pj

⋂
P⊥j−1 , where the orthogonality is with

respect to the inner product on X .

Harmonic as in Laplace annihilation in the container space.

Remarkably in the case of a sphere–sum= of 2 spaces:
Harmonic, homogenous of degree n and harmonic
homogenous of degree n− 1 which gives the whole
polynomial space.
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Let us consider integration over a finite interval [a, b], a < b . In
this case, as is well known, the nodes of the celebrated
Gaussian quadrature formula can be uniquely determined by
the following characteristic property of the nodes of an N ≥ 1
point Gauss quadrature: The N nodes are the zeros of the
unique monic polynomial of minimal mean-square deviation
on [a, b] . In other words, the nodes are the zeros of the
unique solution of an extremal problem. In the work of
Damelin and Grabner, this idea was extended to the sphere
whereby the authors related numerical integration via an
extremal problem using Riesz energy and a class of G
invariant kernels defined on the sphere.
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Theorem Let K be admissible on X and Z ⊂ X be a point
subset of cardinality N ≥ 1 . If q ∈ Πn is a polynomial of
degree at most n ≥ 1 on X then,

|R(q, Z, µ)|

≤ max
j≤n, l≤νn

1

aj,l
(K)1/2‖q‖2 (EK(Z)− a0,0(K))1/2 .
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I Theorem |R(f, Z, µ)| = O(
(

1√
logN

)
. , far away

interactions. O depends on smooth f : Sd → R . Not
sharp for sure. Ergodic actions I think will reduce it.

I S.B. Damelin and P. Grabner, Energy functionals,
Numerical integration and Asymptotic equidistribution on
the sphere, Journal of Complexity, 19(2003), pp 231-246.
(Postscript) Corrigendum, Journal of Complexity,
(20)(2004), pp 883-884.
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In numerical integration or cubature we approximate the
integral of a function f ∈ H(K) ,

I(f ; µ̃) =

∫
X
f(x) dµ̃(x) = EK(µ̃, µf ) =

= 〈µ̃, µf 〉M = 〈φµ̃, f〉H(K)

by the cubature rule

I(f ; µ̂) =

∫
X
f(x) dµ̂(x) =

n∑
i=1

cif(xi) = EK(µ̂, µf ) =

= 〈µ̂, µf 〉M = 〈φµ̂, f〉H(K)

where µ̂ is the charge distribution (signed measure) with
support N points, x1, . . . , xN and charge ci at each point fi .
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Moreover,

φµ̃(x) =

∫
X
K(x, y) dµ̃(y)

is the representer of the integration functional, and

φµ̂(X) =

∫
X
K(x, y) dµ̂(y) =

N∑
i=1

ciK(x, xi)

is the representer of the cubature rule functional. The error of
this numerical approximation is∫

X
f(x) dµ̃(x)−

n∑
i=1

cif(xi) = I(f ; µ̃)− I(f ; µ̂) =

∫
X
f(x) d[µ̃− µ̂](x)

= EK(µ̃− µ̂, µf ) = 〈µ̃− µ̂, µf 〉M = 〈φµ̃ − φµ̂, f〉H(K) .
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The worst-case integration error is defined as the largest
absolute value of this error for integrands, f , with unit norm.
By the Cauchy-Schwartz inequality we see that this occurs
when f is parallel to φµ̃ − φµ̂ , or equivalently, µf is parallel to
µ̃− µ̂ . Thus, we have:
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DK(µ̃, µ̂) := min
‖f‖H(K)≤1

∣∣∣∣∣
∫
X
f(x) dµ̃(x)−

N∑
i=1

cif(xi)

∣∣∣∣∣
=
√
EK(µ̃− µ̂) = ‖µ̃− µ̂‖M = ‖φµ̃ − φµ̂‖H(K)

=

{∫
X2

K(x, y) dµ̃(x) dµ̃(y)− 2

N∑
i=1

ci

∫
X
K(xi, y) dµ̃(y)

+

N∑
i,k=1

cickK(xi, xk)


1/2
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The quantity DK(µ̃, µ̂) , defined by above which depends both
on the placement and magnitude of the point charges defining
µ̂ , is called the discrepancy. We see that it is equivalent to the
square root of an energy provided the right hand side is well
defined.
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For a fixed choice of points Y = {x1, . . . , xN} , the best
cubature rule, i.e., the choice of ci that minimizes the
discrepancy, is obtained by choosing the potential induced by
µ̂ to match the potential induced by µ̃ on Y , i.e.,

φµ̂(xi) = φµ̃(xi), i = 1, · · · , N.

In this case

DK(µ̃, µ̂) = {EK(µ̃)− EK(µ̂)}1/2 .

The best choice of locations and magnitude of the charges is
to find the set Y consisting of n points that has maximum
energy under the given constraint.
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It is now possible to define a distance on X by way of:

distK(x, y) :=
√
K(x, x)− 2K(x, y) +K(y, y), x, y ∈ X.
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The Quantum Problem

A key problem in Quantum Computation is how to
approximate quantum gates. The 2 main notions in classical
computing are then translated into Quantum equivalents.

I A 1-qubit, is a quantum bit of information represented by
α|0〉+ β|1〉 where α, β ∈ C and |α|2 + |β|2 = 1 . n-qubits
are defined as n tensor products of some 1-qubits.

I A n-bit quantum gate is viewed as a linear function on n
qubits, which is represented by an element in U(2n,C) .
A 1-qubit gate is taken to be an element of SU(2,C) to
preserve the norm.
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The Quantum Problem

The Quantum Problem is how to find small sets of quantum
gates which generate SU(2) . However, since SU(2) is not
finitely generated, no finite set will completely generate
SU(2) . We consider a well defined notion of approximation.
Good coverings S3 . Henceforth, G refers to either the group
SU(2) or PSU(2) .

I dG(M,N) =

√
1− |Tr(M

†N)|
2 , which is invariant under

the group action. † is complex conjugation.
I Denote the Haar measure on G by µ . Then

µ(BG(M, ε)) = µ(BG(I, ε)) , M ∈ G, ε > 0 .
I A universal set Γ is a subset of G that generates a

dense subgroup with respect to dG
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Some Quick Picture

Since SU(2) is diffeomorphic to S3 , the Quantum problem
can be envisioned as figuring out how to best cover S3 with
balls of radius ε . To help envision this, some basic instances
were simulated in the 2-dimensional case.

I Left picture is of all products of length 5 over a universal
set with positive coordinates.

I Right picture is of all products of length 7 over the same
universal set with positive coordinates.

I Two arcs of the same size are pictured, centered at
generated points. Endpoints of the arcs are included for
clarity, but are not generated points.

I Notice that the arcs can cover the circle in the right
picture, but cannot cover the circle in the left picture.
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Some Quick Pictures

Figure: Rough covering the unit cirlce by arcs, the exact
representation is in 4 dimensions

Steven Damelin Joint work with: Alec Greene, QingZhong LiangApproximating 1-Qubit Gates: Energy and Discrepancy



Some common themes
Interacting particle-Energy-Discrepancy

The Quantum Problem
Conjecture on the Covering Radius

The Quantum Problem

Basis for the approximation theory.

Theorem (Solovay-Kitaev)

Let Γ be a finite universal set in SU(2) and ε > 0 . Then
there exists c > 0 such that for any X ∈ SU(2) , there is a
finite product S of gates in Γ of length O(logc(1

ε )) such that
dG(S,X) < ε .

This theorem suggests that instead of measuring how
efficiently a universal set can approximate one gate, that it is
practical to measure how efficient a universal set can
approximate all of SU(2) .
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The Covering Exponent

To expand on this notion on the efficiency of universal sets,
we look to measure how well universal sets can approximate
any quantum gate. Let Γ be a universal set in G equipped
with a positive weight w .

I For any γ ∈ 〈Γ〉 , define the height of γ

h(γ) = min

{∑
i

w(ci) : ci ∈ Γ,
∏
i

ci = γ

}

I The height represents the cost of the gate γ , and very
often the weight is chosen so that most of Γ has weight
1.
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The Covering Exponent

The goal is to effectively measure how much it costs to
approximate any gate within a tolerance of ε by a gate
generated over Γ . For convenience, define for each t > 0 ,
the sets:

I UΓ(t) = {γ ∈ 〈Γ〉 : h(γ) = t}
I VΓ(t) = {γ ∈ 〈Γ〉 : h(γ) 6 t}
I Then the Covering Height for a tolerance ε > 0 is given

by

tε = min

{
t > 0 : G ⊂

⋃
γ∈VΓ(t)

BG(γ, ε)

}
I tε represents the minimal height required to cover S3

with balls of radius ε centered at points generated by Γ .
However, tε is extraordinarily hard to compute.
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The Covering Exponent

Here is an example of an almost covering with tolerance
ε = 0.1 . Then t0.1 = 7 + 1 = 8 .
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The Covering Exponent [Sar]

I Notice that G ⊂
⋃

γ∈VΓ(tε)

BG(γ, ε) for any ε , and thus

µ(BG(ε)) |VΓ(t)| > 1

I Define the Covering Exponent of Γ over G with respect
to w as

K(Γ) = lim sup
ε→0

log |VΓ(tε)|
log(1/µ(BG(ε)))

I The covering exponent compares how quickly the
number of points Γ generates grows against how quickly
the measure of the balls being used grows. Thus is a
good way of seeing the efficiency of a universal set.
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Constructing an Efficient Universal Set

For S ⊂ R , define H(S) as the set
{a+ bi+ cj + dk : a, b, c, d ∈ S} . Furthermore, denote the unit
sphere over the quaternions as H1(S) .

I Every Matrix M ∈ SU(2) can be written as
[
α β

−β α

]
and

thus can be related to the pair of complex numbers α, β
I Note that SU(2) is isomorphic to H1(R) via the map[

α β

−β α

]
7→ α+ βj

I Define Φ : U(2)→ H(R) so that Φ(M) = α+ βj
I Conveniently, Φ(M †) = Φ(M) . Thus, we have the

identity Tr(M †N) = 2〈Φ(M),Φ(N)〉
|Φ(M)||Φ(N)|
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Constructing an Efficient Universal Set

The aim is to construct integer lattices in H(Z) , and use the
identity from the last slide to get a good bound for the
covering exponent. Let q ≡ 1 (mod 4) be prime.

I Consider Lk = {a ∈ H(Z) : |a| = qk} . Then Lk ⊂ 〈L1〉
and thus define L = {a ∈ H(Z) : |a| = qk, k ∈ N} .

I The problem can be simplified by considering
representations of q2k as a sum of four squares. Note
that when q ≡ 5 that L1 is generated by

A = {1 + 2i, 1 + 2j, 1 + 2k, 1− 2i, 1− 2j, 1− 2k, i, j, k}

I We will take T = 1√
5
Φ−1(A) as our universal set.
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Constructing an Efficient Universal Set

Consider the Pauli matrices denoted here as

X =

[
1 0
0 −1

]
, Y =

[
0 −i
i 0

]
, Z =

[
0 1
1 0

]
Notice that for any of the matrices above say M , iM ∈ SU(2)
and has an inverse of −iM . Thus, we take G = PSU(2) . Let

sx =
1√
5

(1 + 2iX), sy =
1√
5

(1 + 2iY ), sz =
1√
5

(1 + 2iZ)

s−1
x =

1√
5

(1− 2iX), s−1
y =

1√
5

(1− 2iY ), s−1
z =

1√
5

(1− 2iZ)

Define T as

T = {X,Y, Z, sx, sy, sz, s−1
x , s−1

y , s−1
z }
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Constructing an Efficient Universal Set

As claimed,

Φ(iX) = i,Φ(iY ) = j,Φ(iZ) = k

Φ(sx) =
1√
5

(1 + 2i),Φ(sy) =
1√
5

(1 + 2j),Φ(sz) =
1√
5

(1 + 2k)

Φ(s−1
x ) =

1√
5

(1− 2i),Φ(s−1
y ) =

1√
5

(1− 2j),Φ(s−1
z ) =

1√
5

(1− 2k)

Thus T = 1√
5
Φ−1(A) .

Steven Damelin Joint work with: Alec Greene, QingZhong LiangApproximating 1-Qubit Gates: Energy and Discrepancy



Some common themes
Interacting particle-Energy-Discrepancy

The Quantum Problem
Conjecture on the Covering Radius

Constructing an Efficient Universal Set

The first obstacle in computing K(Γ) comes from reliably
expressing |VΓ(tε)| . However, since T = 1√

5
Φ−1(A) it is by

construction that UΓ(t) is in bijection with Lt for all t .
Note that if γ ∈ UΓ(t) , then 5tΦ(γ) ∈ Lt implies that
5t+1Φ(γ) ∈ Lt+1 . Thus, VΓ(t) is in bijection with Lt since for
all k 6 t each matrix in UΓ(k) has a representative in Lt . The
number of ways to express an odd integer n as a sum of 4
squares is

r4(n) = 8
∑
m|n

m

Thus,

|VΓ(t)| = r4(5t) = 8

t∑
k=0

5k = 2 · 5t+1 − 2

Steven Damelin Joint work with: Alec Greene, QingZhong LiangApproximating 1-Qubit Gates: Energy and Discrepancy



Some common themes
Interacting particle-Energy-Discrepancy

The Quantum Problem
Conjecture on the Covering Radius

Constructing an Efficient Universal Set

Then we have all the tools to bound K(T ) .

I |VT (tε)| = 2 · 5tε+1 − 2
I As shown in [Sar] , Hecke operators can be used to show

that there is exists c > 0 so that |VT (tε)| 6 4πctε
ε4

.
Standard computations also give µ(BG(ε)) ∼ ε2 .

I Recall: K(T ) = lim sup
ε→0

log(|VT (tε)|)
log(µ(1/µ(BG(ε))))

I It follows from the results of [DGLM] that |VΓ(tε)| is
bounded by some function of ε which gives that
K(T ) 6 2 .

I Since the logarithms share the same base in the
numerator and the denominator, the choice of q is
irrelevant as long as q ≡ 1 (mod 4) . Thus, T is the most
efficient construction of this type.
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numerator and the denominator, the choice of q is
irrelevant as long as q ≡ 1 (mod 4) . Thus, T is the most
efficient construction of this type.
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Conjecture on the Covering Radius

Ultimately, we would like to compute the covering radius of G
by VT (tε) with respect to dG . Recall that G can be either
PSU(2) or SU(2) . Consider the following optimistic
conjecture from [DGLM]:

Conjecture

There is 0 < δ < 1 so that for all a ∈ H1(R) and ε > 0 there is
an m ∈ N and b ∈ Lm with 〈a,b〉|b| > 1− 5

−2m
2−δ

Note that as tε grows without bound as ε goes to zero,
1− 5

−2tε
2−δ approaches 1 monotonically from the left.
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The Conjecture Visualized

Figure: In terms of the earlier scenario, the conjecture gives that
size of the arcs required to cover the circle is slightly larger than 0.1
and that any ε it does work for satisfies ε 6 5

−14
2−δ .
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Conjecture on the Covering Radius

If the conjecture holds true, then for any M ∈ SU(2) and
ε > 0 there is an N ∈ VT (tε) so that

Tr(M †N) = 2〈Φ(M),Φ(N)〉 = 2

〈
Φ(5tεM)

5tε
,Φ(N)

〉
> 2(1−5

2tε
2−δ )

which implies

dG(M,N) =

√
1− |Tr(M

†N)|
2

6 5
tε

2−δ

and since this bound is constructed off tε , if multiple ε

generate the same tε then ε 6 5
tε

2−δ . Thus, ε 6 5
tε

2−δ will
always be true.
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Conjecture on the Covering Radius

Why does this matter?
I When the conjecture holds, it follows from [DGLM] that

ε 6 5
tε

2−δ and in turn K(T ) 6 2− δ . Practically speaking,
the conjecture allows the covering exponent to be
estimated using simpler calculations over quaternions.
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I The conjecture can be reworded in several ways. For
example [DGLM]:

Conjecture

Let ρ be the euclidean distance on Φ(PSU(2)) . Then for all
a ∈ H1(R) , there is a b ∈ Ltε such that

1

b
ρ(a, b) 6 ε

√
2

I (log(N))bN−1/4 any b works.
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I S.B. Damelin and B. Mode, On a qualitative
Solovay-Kitaev theorem for Quantum gates, arxiv:
1709.03007.

I S.B. Damelin, Q. Liang and B. Mode, Golden Gates and
Discrepancy, arxiv: 1506.05785.

Steven Damelin Joint work with: Alec Greene, QingZhong LiangApproximating 1-Qubit Gates: Energy and Discrepancy



Some common themes
Interacting particle-Energy-Discrepancy

The Quantum Problem
Conjecture on the Covering Radius

I Shortest paths through random points and K-Nearest
and Random Graphs.

I Whitney extensions and interpolation in high dimensions.
I Codes-designs.
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I M. Hua, S. Damelin, J. Sun and M. Yu, The Truncated
and Supplemented Pascal Matrix and Applications,
Involve, Vol. 11, No. 2, 2018.

I S. B. Damelin, J. Sun, M. Yu and D. Kaiser, An
Algebraic-Combinatorial proof for a Ring formulation of
the MDS conjecture, arxiv: 1611.02354.

I S. B. Damelin, J. Sun and M. Yu, An Analytic and
Probabilistic Approach to the Problem of Matroid
Representibility, arxiv: 1506.06146.

I Sung Jin Hwang, Steven B. Damelin, Alfred O. Hero III,
Shortest Path through Random Points, The Annals of
Applied Probability, 2016, Vol. 26, No. 5, pp 2791-2823.

I S.B. Damelin and C. Fefferman, On the Whitney
extension-interpolation-alignment problem for almost
isometries with small distortion in RD , arxiv: 1411.2468.
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Thank you very much again for this invitation.

Steven Damelin Joint work with: Alec Greene, QingZhong LiangApproximating 1-Qubit Gates: Energy and Discrepancy


	Some common themes
	Interacting particle-Energy-Discrepancy
	Equivalence of Energy and Discrepancy

	The Quantum Problem
	Conjecture on the Covering Radius

